Numerical and Experimental Assessment of Mechanical Properties of Biobased Epoxy Reinforced by Flax Fibres and Seashell Nanoparticles for Prosthetic Socket

Author:

Hadi Ahmed Namah1ORCID,Mohammed Mohammed Razzaq2ORCID,Al-Bakri Amir F.1ORCID

Affiliation:

1. Department of Biomedical Engineering, College of Engineering, University of Babylon, Hillah, Iraq

2. Department of Mechanical Engineering, College of Engineering, University of Misan, Amarah, Iraq

Abstract

Chronic diseases such as peripheral vascular and arteriosclerosis, wars, terrorist attacks, natural disasters, and traffic collisions are the major causes of the high demand for prostheses. The inadequacy of the typically used materials at reasonable prices and the high stiffness of these materials, which can negatively influence socket-limb load transfer, imply an urgent need to find alternatives to the existing prosthetic sockets. This work aims to use renewable, low-hazard, and low-cost natural flax fibres and seashell nanoparticles as substitutes for conventional reinforcement materials for prosthetic sockets. Seashell nanoparticles of 1, 3, and 5 weight fractions and 3 layers of flax fibres were integrated into biobased epoxy. Tensile and flexural properties of modified and unmodified specimens were assessed, and the finite element technique (ANSYS-20) was utilised to analyse and evaluate the mechanical characteristics of the specimens by observing the stress and total deformation. Here, all fabricated nanocomposites provided tensile and flexural strength higher than that of additive-free biobased epoxy. In addition, hybrid nanocomposites fabricated from 3 layers of flax fibres and 3 wt% of seashell nanoparticles were revealed to have the highest mechanical properties compared with unmodified resin and biobased epoxy filled with other percentages of the reinforcement. These findings were further validated numerically in which the total deformation was shown to decrease after the addition of 3 wt% of these nanoparticles within the nanocomposites. Moreover, the antibacterial activity proved its superb antimicrobial performance against various pathogenic microorganisms, namely, Staphylococcus aureus and E. coli. Accordingly, the fabricated composite systems are suggested to be an appropriate candidate for forming prosthetic sockets. These composites have promising mechanical and antibacterial properties, and they are made of affordable and available materials, which can be a suitable option, particularly in poor countries due to the fact that advanced technologies may require a substantial amount of money for equipment, surgery fees, and medical care.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3