A Machine Learning Approach for the Detection of QRS Complexes in Electrocardiogram (ECG) Using Discrete Wavelet Transform (DWT) Algorithm

Author:

Rizwan Ali1ORCID,Priyanga P2,Abualsauod Emad H.3ORCID,Zafrullah Syed Nasrullah4ORCID,Serbaya Suhail H.1,Halifa Awal5ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Assistant Professor, Department of CSE, RV Institute of Technology and Management, Bengaluru, India

3. Department of Industrial Engineering, College of Engineering, Taibah University, Madina Almonawara 41411, Saudi Arabia

4. Department of Information Systems, College of Computer Engineering & Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

5. Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

This study describes a modified approach for the detection of cardiac abnormalities and QRS complexes using machine learning and support vector machine (SVM) classifiers. The suggested technique overtakes prevailing approaches in terms of both sensitivity and specificity, with 0.45 percent detection error rate for cardiac irregularities. Moreover, the vector machine classifiers validated the proposed method's superiority by accurately categorising four ECG beat types: normal, LBBBs, RBBBs, and Paced beat. The technique had 96.67 percent accuracy in MLP-BP and 98.39 percent accuracy in support of vector machine classifiers. The results imply that the SVM classifier can play an important role in the analysis of cardiac abnormalities. Furthermore, the SVM classifier also categorises ECG beats using DWT characteristics collected from ECG signals.

Funder

Prince Sattam bin Abdulaziz University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3