Optimal Number and Locations of Smart RMUs for Self-Healing Distribution Networks

Author:

Abdalla Omar H.1ORCID,Mostafa Azza2ORCID

Affiliation:

1. Department of Electrical Power and Machines Engineering, Faculty of Engineering, Helwan University, Cairo 11792, Egypt

2. Planning Department, Egyptian Electric Utility and Consumer Protection Regulatory Agency (EgyptERA), Cairo 11811, Egypt

Abstract

Smart grids with self-healing (SH) capability provide an important intelligent feature to help in fast correction actions in case of network faults. SH architecture consists of modern communication systems, smart equipment, and intelligent sensors. With the high cost of SH components (especially smart ring main unit (SRMU)), optimization is required to achieve optimum performance with minimum cost. This study presents a proposed methodology to determine the optimum number and locations of SRMUs in electricity distribution networks considering various cost issues. The disconnection cost of on-grid photovoltaic (PV) plants is taken into consideration as an important factor in determining the locations of the SRMUs. The nonlinear programming (NLP) optimization technique is used to determine the required number of SRMUs, considering the cost/benefit analysis (cost of upgrading MRMUs to SRMUs/benefit due to interruption time reduction), which is the most important factor from DISCOs’ perspective. The mixed integer linear programming (MILP) optimization technique is employed for selecting the optimal locations of the SRMUs considering the cost of losses, energy not supplied (ENS), and PV disconnection, which improves network operation cost. The methodology takes into consideration the cable failure rate and the interest rate. Moreover, the study introduces the Egyptian electrical distribution network and a pilot project for control centre development using SRMUs. The methodology is applied to a modified IEEE 37-node test feeder and a part of a specific district network in South Cairo consisting of 158 nodes; both systems include a number of PV distributed generation plants. Simulation results are presented to show the effectiveness of the proposed method.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Reference44 articles.

1. Development of the monitoring system in the smart distribution substation in Guangzhou, China;M. Zhang

2. Research and application of monitoring method of small current grounding fault in distribution line based on cloud computing;H. Guanghui

3. A Robust Framework Design of IoT Monitoring Device for Power Distribution Network

4. Optimal reconfiguration strategy for distribution networks with PV connected systems;O. H. Abdalla

5. Fault Location Observability using Phasor Measurements Units via Semidefinite Programming

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3