Automated Segmentation of Mass Regions in DBT Images Using a Dilated DCNN Approach

Author:

Ye Jianming1ORCID,Yang Weiji2ORCID,Wang Jianqing2ORCID,Xu Xiaomei2ORCID,Li Liuyi2ORCID,Xie Chun1ORCID,Chen Gang3ORCID,Wang Xiangcai1ORCID,Lai Xiaobo2ORCID

Affiliation:

1. First Affiliated Hospital, Gannan Medical University, Ganzhou, China

2. School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China

3. Department of Medical Engineering, The 73th Group Army Hospital of P.L.A, Xiamen, China

Abstract

To overcome the limitations of conventional breast screening methods based on digital mammography, a quasi-3D imaging technique, digital breast tomosynthesis (DBT) has been developed in the field of breast cancer screening in recent years. In this work, a computer-aided architecture for mass regions segmentation in DBT images using a dilated deep convolutional neural network (DCNN) is developed. First, to improve the low contrast of breast tumour candidate regions and depress the background tissue noise in the DBT image effectively, the constraint matrix is established after top-hat transformation and multiplied with the DBT image. Second, input image patches are generated, and the data augmentation technique is performed to create the training data set for training a dilated DCNN architecture. Then the mass regions in DBT images are preliminarily segmented; each pixel is divided into two different kinds of labels. Finally, the postprocessing procedure removes all false-positives regions with less than 50 voxels. The final segmentation results are obtained by smoothing the boundaries of the mass regions with a median filter. The testing accuracy (ACC), sensitivity (SEN), and the area under the receiver operating curve (AUC) are adopted as the evaluation metrics, and the ACC, SEN, as well as AUC are 86.3%, 85.6%, and 0.852 for segmenting the mass regions in DBT images on the entire data set, respectively. The experimental results indicate that our proposed approach achieves promising results compared with other classical CAD-based frameworks.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3