Design and Analysis of a Novel Quasi-Zero Stiffness Isolator under Variable Loads

Author:

Xie Yingjiang1ORCID,Niu Fu1,Sun Jinggong1ORCID,Meng Lingshuai1ORCID

Affiliation:

1. Academy of Systems Engineering, Academy of Military Sciences, Beijing 100166, China

Abstract

The designed load of most quasi-zero stiffness (QZS) isolators is constant. The isolation performance will drop sharply once the load changes. A novel QZS isolator that can adapt to variable loads is proposed in this paper to improve the range of application of the isolator. The isolator is designed by paralleling the electromagnetic spring (ES), which provides negative stiffness, and the pneumatic spring (PS), which provides positive stiffness. The positive and negative stiffness can be adjusted by changing the pressure and coil current, which provides the possibility for the isolator to adapt to variable loads. This paper derived the conditions for the isolation system to obtain QZS characteristics, proposed the dynamic model of the isolation system, derived and verified the analytical expressions of the amplitude-frequency response and force transmissibility (FT), and discussed the change of FT and displacement transmissibility(DT) under different loads. Theoretical analysis shows that changing the pressure and coil current in the same proportion can maintain the superior low-frequency isolation performance when the load changes, thanks to the preservation of the QZS characteristics of the system after adjusting the pressure and coil current. Finally, the simulation results fg and isolation frequency band over the linear isolation system and PS isolation system. Furthermore, the proposed isolator can be adjusted online.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3