Recommendation Model of Tourist Attractions Based on Deep Learning

Author:

Cheng Xinquan1ORCID,Su Wenlong1

Affiliation:

1. Department of Tourism Management, PaiChai University, Daejeon 35345, Republic of Korea

Abstract

In order to solve the problem of tourism information overload caused by the rapid development of tourism and the Internet era, the author proposes a tourist attraction recommendation model based on deep learning. Convolutional Neural Network (CNN) is used to extract the sentiment of text comments, the Pearson similarity formula is used to calculate similar user groups, and the mean absolute error (MAE) is used to evaluate the resulting error. Compare with traditional collaborative filtering methods. Experimental results show that: the MAE value is smaller than the MAE value of the collaborative filtering method, indicating that considering tourists’ behavioral information, contextual information, and emotional factors in comments can effectively improve the accuracy of recommendation, as the data volume of the test set increased from 250 to 2000; although there was an increase in the MAE value, the overall trend showed a downward trend, indicating that the quality of the model can be more fully verified when the data volume is large. The model proposed by the author can effectively reduce the prediction error and improve the efficiency of tourist attractions recommendation.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3