Multipopulation Particle Swarm Optimization Algorithm with Neighborhood Learning

Author:

Li XiaoMing1ORCID,Wang ZiYi2,Ying Yi1,Xiao FangXiong3

Affiliation:

1. School of Computer Science and Engineering, Sanjiang University, Nanjing 210012, Jiangsu, China

2. College of Automation & College of Artificial Intelligence, Nanjing University of Post and Telecommunications, Nanjing 210023, Jiangsu, China

3. School of Software Engineering, Jinling Institute of Technology, Nanjing 211169, Jiangsu, China

Abstract

Particle swarm optimization (PSO) algorithm is widely used due to its fewer control parameters and fast convergence speed. However, as its learning strategy is only learning from the global optimal particle, the algorithm has the problem of low accuracy and easily falling into local optimization. In order to overcome this defect, a multipopulation particle swarm optimization algorithm with neighborhood learning (MPNLPSO) is proposed in this article. In MPNLPSO, a small-world network neighborhood learning strategy is proposed to make particles learn from the neighborhood optimal particles instead of only the global optimal particle. Furthermore, the concept of multipopulation cooperation is introduced to balance the ability of global exploration and local exploration. In addition, a dynamic opposition-based learning strategy is proposed to effectively activate the particles in the search stagnation state. Moreover, in order to improve the accuracy of the algorithm and, to some extent, avoid the population diversity decreases too fast, as the searching process continues, Lévy flight is introduced to randomly perturb the particles of historical optimal and neighborhood optimal. To verify the performance of the proposed algorithm experimentally, twenty benchmark functions are solved. Experimental results show that the proposed multipopulation particle swarm optimization algorithm with neighborhood learning presents high efficiency and performance with a certain robustness.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3