Basketball Motion Posture Recognition Based on Recurrent Deep Learning Model

Author:

Liu FeiPeng1,Zhang Wei2ORCID

Affiliation:

1. Changsha Medical University, Changsha 410219, Hunan, China

2. Zhengzhou University, Zhengzhou 450000, Henan, China

Abstract

In order to improve the training effect of athletes and effectively identify the movement posture of basketball players, we propose a basketball motion posture recognition method based on recurrent deep learning. A one-dimensional convolution layer is added to the neural network structure of the deep recurrent Q network (DRQN) to extract the athlete pose feature data before the long short-term memory (LSTM) layer. The acceleration and angular velocity data of athletes are collected by inertial sensors, and the multi-dimensional motion posture features are extracted from the time domain and frequency domain, respectively, and the posture recognition of basketball is realized by DRQN. Finally, the new reinforcement learning algorithm is trained and tested in a time-series-related environment. The experimental results show that the method can effectively recognize the basketball motion posture, and the average accuracy of posture recognition reaches 99.3%.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3