Artificial Selection Drives SNPs of Olfactory Receptor Genes into Different Working Traits in Labrador Retrievers

Author:

Yang Min1,Zhang Han-Xin2,Geng Guang-Jun3,Wang Fu-Jin4,Liu Cheng-Wu1,Liu Jian-Li5ORCID

Affiliation:

1. Police-Dog Technology Department, Criminal Investigation Police University of China, Shenyang, Liaoning 110034, China

2. Mark Inspection Department, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, China

3. Technology Department, Shenyang Traffic Police Detachment, Shenyang, Liaoning 110001, China

4. Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116044, China

5. School of Life Science, Liaoning University, Shenyang, Liaoning 110036, China

Abstract

Labs as guide dogs or sniffer dogs in usage have been introduced into China for more than 20 years. These two types of working dogs own blunt or acute olfactory senses, which have been obtained by artificial selection in relatively closed populations. In order to attain stable olfactory attributes and meet use-oriented demands, Chinese breeders keep doing the same artificial selection. Though olfactory behavior is canine genetic behavior, genotypes of OR genes formed by breeding schemes are largely unknown. Here, we characterized 26 SNPs, 2 deletions, and 2 insertions of 7 OR genes between sniffer dogs and guide dogs in order to find out the candidate alleles associated with working specific traits. The results showed that there were candidate functional SNP alleles in one locus that had statistically severely significant differences between the two subpopulations. Furthermore, the levels of polymorphism were not high in all loci and linkage disequilibrium only happened within one OR gene. Hardy–Weinberg equilibrium (HWE) tests showed that there was a higher ratio not in HWE and lower FST within the two working dog populations. We conclude that artificial selection in working capacities has acted on SNP alleles of OR genes in a dog breed and driven the evolution in compliance with people’s intentions though the changes are limited in decades of strategic breeding.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3