Attenuation of Coda and Body Waves for Tbilisi and Surrounding Area, Georgia

Author:

Shengelia Ia1,Jorjiashvili Nato1ORCID,Godoladze Tea1,Buzaladze Albert1

Affiliation:

1. Institute of Earth Sciences and National Seismic Monitoring Centre, Ilia State University, Tbilisi, Georgia

Abstract

The attenuation of high-frequency seismic waves was investigated in the crust beneath Tbilisi and the surrounding territory by analysing 225 local earthquakes that occurred from 2008 to 2020 and were recorded by eight seismic stations. The quality factors of coda waves QC and direct P and S waves, QP and QS, were estimated using the single backscattering model and the extended coda normalization method, respectively. The separation of intrinsic quality factors Qi from scattering quality factor QSC was fulfilled by Wennerberg’s method. Observed results show that all evaluated attenuation parameters are frequency-dependent in the frequency range of 1-32 Hz and increase with increasing frequency. Coda QC values increase also with increasing lapse time window from 20 s to 50 s and vary from 91±5 at 1.5 Hz to 1779±108 at 24 Hz, respectively. P waves attenuate slightly faster than S waves, and the ratio of QS/QP is more than unity and varies in a range of 1.5-1.8. The intrinsic and scattering quality factors are expressed by the following power laws: Qi=77±4f0.930±0.046 and QSC=219±6f0.924±0.050. The results show that Qi is close to QC, but QSC is larger than Qi, which means that intrinsic attenuation has a dominant role compared with the scattering effect. Our results were compared with those obtained in two other seismically active regions of Georgia, as well as with regions of the world. In general, the observed quality factors and their frequency-dependent relationships follow a similar trend, characterizing seismically active regions with complex tectonics. The calculated attenuation parameters characterize the entire earth’s crust under Tbilisi and the surrounding area. The results obtained will be useful in future seismological studies since the Q parameters are estimated for the first time for the given region.

Funder

Scientific Foundation

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3