Unsupervised Data Mining and Effect of Fast Rehabilitation Nursing Intervention in Fracture Surgery

Author:

Yu Tongyao1ORCID,Zhou Haihong2ORCID

Affiliation:

1. Orthopaedic Trauma Department of Wenling First People’s Hospital, Wenling 317500, Zhejiang, China

2. Hand and Foot Surgery Department of Wenling First People’s Hospital, Wenling 317500, Zhejiang, China

Abstract

At present, the most commonly used surgical treatment for fractures caused by external force injury is clinical, and unsupervised data mining is more advantageous in the face of the unknown format of perioperative network data. Therefore, this research aims to explore the application effect of unsupervised data mining in the concept of rapid rehabilitation nursing intervention after fracture surgery. 80 patients who underwent fracture surgery in the Department of Orthopedics of XXX Hospital were determined as the subjects, who were rolled into a research group (group R, 40 cases) and a control group (group C, 40 cases) by drawing lots. An unsupervised data mining algorithm based on unsupervised data mining for support vector machines (VDMSVMs) was proposed and applied to two groups of patients undergoing perioperative fracture surgery with the rapid rehabilitation nursing intervention and basic routine nursing. The results showed that the number of important features selected by the VDMSVM algorithm (5) was obviously more than that of the compressed edge fragment sampling (CEFS) algorithm (1) and the multicorrelation forward searching (MCFS) algorithm (2) ( P < 0.05 ). The number of noise features screened by the VDMSVM algorithm (3) was much less in contrast to that of the CEFS algorithm and the MCFS algorithm, which was 8 and 10, respectively (P < 0.05). The Visual Analogue Scale (VAS) scores of the fracture site at the 4th, 8th, 12th, and 16th hour after surgery in group R were all lower than the scores in group C ( P < 0.05 ). The length of hospital stay (LoHS) in group R was greatly shorter than that in group C ( P < 0.05 ). After different nursing methods, the World Health Organization Quality of Life (WHOQOL-BREF) score of patients in group R (89.64 points) was greatly higher than the score in group C (61.45 points) ( P < 0.05 ). The nursing satisfaction score of group R was 92.35 ± 3.65 points, and that in group C was 2.14 ± 1.25 points, respectively ( P < 0.05 ). The test results verified the effectiveness of the feature selection of the VDMSVM algorithm. The rapid rehabilitation nursing intervention was conductive to reducing the postoperative pain of fracture patients, shortening the LoHS of patients, improving the quality of life (QOL) of fracture surgery patients, and increasing the patient’s satisfaction with nursing.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3