A Novel Approach to Identify the Categories of Attributes for the Three-Factor Structure in Customer Satisfaction

Author:

Ahmad Amir1ORCID,Barukab Omar2ORCID

Affiliation:

1. College of Information Technology, United Arab Emirates University, Al Ain, UAE

2. Faculty of Computing and Information Technology, P.O. Box 411, King Abdulaziz University, Rabigh 21911, Jeddah, Saudi Arabia

Abstract

Evaluation of customer satisfaction is an important area of marketing research in which products are defined by attributes that can be grouped into different categories depending on their contribution to customer satisfaction. It is important to identify the category of an attribute so that it can be prioritized by a manager. The Kano model is a well-known method to perform this task for an individual customer. However, it requires filling in a form, which is a difficult and time-consuming exercise. Many existing methods require less effort from the customer side to perform data collection and can be used for a group of customers; however, they are not applicable to individuals. In the present study, we develop a data-analytic method that also uses the dataset; however, it can identify the attribute category for an individual customer. The proposed method is based on the probabilistic approach to analyze changes in the customer satisfaction corresponding to variations in attribute values. We employ this information to reveal the relationship between an attribute and the level of customer satisfaction, which, in turn, allows identifying the attribute category. We considered the synthetic and real housing datasets to test the efficiency of the proposed approach. The method correctly categorizes the attributes for both datasets. We also compare the result with the existing method to show the superiority of the proposed method. The results also suggest that the proposed method can accurately capture the behavior of individual customers.

Funder

King Abdulaziz University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference41 articles.

1. Attractive quality and must-be quality, Hinshitsu;N. Kano;Journal of the Japanese Society for Quality Control,1984

2. The asymmetric relationship between attribute-level performance and overall customer satisfaction: a reconsideration of the importance–performance analysis

3. A critical review of techniques for classifying quality attributes in the Kano model;J. Mikulić;Managing Service Quality: An International Journal,2011

4. Classification of quality attributes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3