Application of Deep Neural Network Factor Analysis Model in Operating Room Management Nursing Analysis of Postoperative Infection Nursing after Thoracic Surgery

Author:

Wen Jing1,He Jun2ORCID

Affiliation:

1. Department of Medical Engineering, Tangshan Workers’ Hospital, Hebei Province, 063000, China

2. Department of Thoracic Surgery, Tangshan Workers’ Hospital, Hebei Province, 063000, China

Abstract

Thoracic surgery is the main surgical method for the treatment of respiratory diseases and lung diseases, but infections caused by improper care are prone to occur during the operation, which can induce pulmonary edema and lung injury and affect the effect of the operation and the subsequent recovery. Therefore, it is necessary to control the disease in time and adopt more scientific and comprehensive nursing measures. Based on the neural network algorithm, this paper constructs a neural network-based factor analysis model and applies the operating room management nursing to postoperative infection nursing after thoracic surgery and verifies the effect through the neural network model. The statistical parameters in this article mainly include the postoperative infection rate of thoracic surgery, patient satisfaction, postoperative rehabilitation effect, and complications. Through statistical analysis, it can be known that operating room management and nursing can play an important role in postoperative infection nursing after thoracic surgery, effectively reducing postoperative infection nursing after thoracic surgery, and improving the recovery effect of patients after infection.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3