Software Knowledge Entity Relation Extraction with Entity-Aware and Syntactic Dependency Structure Information

Author:

Tang Mingjing1ORCID,Li Tong2ORCID,Wang Wei1,Zhu Rui1ORCID,Ma Zifei3ORCID,Tang Yahui4

Affiliation:

1. School of Software, Yunnan University, Kunming, China

2. School of Big Data, Yunnan Agricultural University, Kunming, China

3. School of Water Conservancy, Yunnan Agriculture University, Kunming, China

4. School of Information, Yunnan University, Kunming, China

Abstract

Software knowledge community contains a large scale of software knowledge entities with complex structure and rich semantic relations. Semantic relation extraction of software knowledge entities is a critical task for software knowledge graph construction, which has an important impact on knowledge graph based tasks such as software document generation and software expert recommendation. Due to the problems of entity sparsity, relation ambiguity, and the lack of annotated dataset in user-generated content of software knowledge community, it is difficult to apply existing methods of relation extraction in the software knowledge domain. To address these issues, we propose a novel software knowledge entity relation extraction model which incorporates entity-aware information with syntactic dependency information. Bidirectional Gated Recurrent Unit (Bi-GRU) and Graph Convolutional Networks (GCN) are used to learn the features of contextual semantic representation and syntactic dependency representation, respectively. To obtain more syntactic dependency information, a weight graph convolutional network based on Newton’s cooling law is constructed by calculating a weight adjacency matrix. Specifically, an entity-aware attention mechanism is proposed to integrate the entity information and syntactic dependency information to improve the prediction performance of the model. Experiments are conducted on a dataset which is constructed based on texts of the StackOverflow and show that the proposed model has better performance than the benchmark models.

Funder

Yunnan Science and Technology Major Project

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference32 articles.

1. Survey on construction of code knowledge graph and intelligent software development;F. Wang;Journal of Software,2020

2. Survey of entity relationship extraction based on deep learning;E. H. Hong;Journal of Software,2019

3. More data, more relations, more context and more openness: a review and outlook for relation extraction;X. Han

4. Entity relation extraction method using semantic pattern;B. Deng;Computer Engineering,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3