Real-Time Modeling of Regional Tropospheric Delay Based on Multicore Support Vector Machine

Author:

Yang Xu123ORCID,Jiang Xinyuan4ORCID,Jiang Chuang123ORCID,Xu Lei5ORCID

Affiliation:

1. School of Spatial Informatics and Geomatics Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal Mining-Induced Disasters of Anhui Higher Education Institutes, Anhui University of Science and Technology, KLAHEI (KLAHEI18015), Huainan 232001, China

3. Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring, Anhui University of Science and Technology, Huainan 232001, China

4. German Research Centre for Geosciences (GFZ), Telegrafenberg, Potsdam 14473, Germany

5. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Real-time modeling of regional troposphere has attracted considerable research attention in the current GNSS field, and its modeling products play an important role in global navigation satellite system (GNSS) real-time precise positioning and real-time inversion of atmospheric water vapor. Multicore support vector machine (MS) based on genetic optimization algorithm, single-core support vector machine (SVM), four-parameter method (FP), neural network method (BP), and root mean square fusion method (SUM) are used for real-time and final zenith tropospheric delay (ZTD) modeling of Hong Kong CORS network in this study. Real-time ZTD modeling experiment results for five consecutive days showed that the average deviation (bias) and root mean square (RMS) of FP, BP, SVM, and SUM reduced by 48.25%, 54.46%, 41.82%, and 51.82% and 43.16%, 48.46%, 30.09%, and 33.86%, respectively, compared with MS. The final ZTD modeling experiment results showed that the bias and RMS of FP, BP, SVM, and SUM reduced by 3.80%, 49.78%, 25.71%, and 49.35% and 43.16%, 48.46%, 30.09%, and 33.86%, respectively, compared with MS. Accuracy of the five methods generally reaches millimeter level in most of the time periods. MS demonstrates higher precision and stability in the modeling of stations with an elevation at the average level of the survey area and higher elevation than that of other models. MS, SVM, and SUM exhibit higher precision and stability in the modeling of the station with an elevation at the average level of the survey area than FP. Meanwhile, real-time modeling error distribution of the five methods is significantly better than the final modeling. Standard deviation and average real-time modeling improved by 43.19% and 24.04%, respectively.

Funder

Anhui Department of Education

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3