Oxidative Damage to Nucleic Acids and Benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA Adducts and Chromosomal Aberration in Children with Psoriasis Repeatedly Exposed to Crude Coal Tar Ointment and UV Radiation

Author:

Borska Lenka1ORCID,Andrys Ctirad2,Krejsek Jan2ORCID,Palicka Vladimir3,Chmelarova Marcela3,Hamakova Kvetoslava4,Kremlacek Jan1ORCID,Fiala Zdenek5ORCID

Affiliation:

1. Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, 50038 Hradec Kralove, Czech Republic

2. Institute of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 50038 Hradec Kralove, Czech Republic

3. Institute of Clinical Biochemistry and Diagnosis, Faculty of Medicine in Hradec Kralove, Charles University in Prague, 50038 Hradec Kralove, Czech Republic

4. Clinic of Dermal and Venereal Diseases, University Hospital Hradec Kralove, Novy Hradec Kralove, 500 05 Hradec Kralove, Czech Republic

5. Institute of Hygiene and Preventive Medicine, Charles University in Prague, Faculty of Medicine in Hradec Kralove, 50038 Hradec Kralove, Czech Republic

Abstract

The paper presents a prospective cohort study. Observed group was formed of children with plaque psoriasis (n=19) treated by Goeckerman therapy (GT). The study describes adverse (side) effects associated with application of GT (combined exposure of 3% crude coal tar ointment and UV radiation). After GT we found significantly increased markers of oxidative stress (8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine), significantly increased levels of benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) DNA adducts (BPDE-DNA), and significantly increased levels of total number of chromosomal aberrations in peripheral lymphocytes. We found significant relationship between (1) time of UV exposure and total number of aberrated cells and (2) daily topical application of 3% crude coal tar ointment (% of body surface) and level of BPDE-DNA adducts. The findings indicated increased hazard of oxidative stress and genotoxic effects related to the treatment. However, it must be noted that the oxidized guanine species and BPDE-DNA adducts also reflect individual variations in metabolic enzyme activity (different extent of bioactivation of benzo[a]pyrene to BPDE) and overall efficiency of DNA/RNA repair system. The study confirmed good effectiveness of the GT (significantly decreased PASI score).

Funder

Charles University in Prague

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3