Numerical Simulation Analysis of Unsteady Temperature in Thermal Insulation Supporting Roadway

Author:

Zhang Shuguang12,Lu Pingping3,Wang Hongwei4ORCID

Affiliation:

1. School of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541000, China

2. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin 541004, China

3. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China

4. Institute of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

High geothermal hazard is a basic problem that must be solved in deep mining; thereby the research on thermal insulation supporting for high temperature control of deep roadway is increasing. However, the quantitative analysis of its thermal insulation effect is yet to be carried out. By building the physical model and control equations of the thermal insulation supporting roadway and considering heat-humidity transfer at wall, the temperature field distribution of surrounding rock and airflow is numerically calculated. Based on numerical simulation results, the evolution law of temperature with ventilation time is analyzed at airflow inlet, outlet, and different sections, then the variation law of surface heat transfer coefficient with position and time is obtained. For heat insulation support structure, the results show that it is not obvious to change the distribution law of temperature field, but it is effective to weaken the convection heat transfer between surrounding rock and airflow. In the main airflow area, the rate of heat exchange gradually decreases with the heat exchange becoming more and more sufficient; in boundary layer, the airflow temperature quickly transits from the wall temperature to that of the main airflow area because of intense collisions of airflow masses, so the mechanism of temperature change is different. The surface heat transfer coefficient well reflected the unstable heat-humidity transfer, especially in the beginning of ventilation or at airflow inlet. Therefore, the heat insulation supporting structure is helpful to the auxiliary cooling of high temperature mine.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3