Protective Effect of Salvianolic Acid A against N-Methyl-N-Nitrosourea-Induced Retinal Degeneration

Author:

Zhou Yumei12,Xu Weiwei1,Liu Anqi1,Tao Ye1,Wang Qun1,Yang Yanfeng1,Wang Liqiang1ORCID,Huang Yifei1ORCID

Affiliation:

1. Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China

2. Department of Ophthalmology, China Emergency General Hospital, Beijing, China

Abstract

Objective. Retinal degeneration (RD) is a serious, irreversible, and blinding eye disease, which seriously affects the visual function and quality of life of patients. At present, there is no effective method to treat RD. The final outcome of its development is photoreceptor cell oxidation and apoptosis. Therefore, looking for safe, convenient, and effective antioxidant therapy is still the key research field of Rd. In this study, the mice model of RD was induced by N-methyl-N-nitrosourea (MNU) in vivo to explore the therapeutic effect and mechanism of salvianolic acids (Sal A) on RD. In vitro, the protective effect of Sal A on MNU injured 661 W cell line of mouse retina photoreceptor cone cells was investigated preliminarily. Methods. Male C57BL/6 mice (7–8 weeks old) received a single intraperitoneal injection (ip) of 60 mg/kg MNU or vehicle control. Treatment groups then received Sal-A 0.5 mg/kg and 1.0 mg/kg via daily intravenous injections. On day 7, functional and morphological examinations were performed, including photopic and scotopic electroretinography (ERG) and hematological analyses to observe functional changes and damage to the outer nuclear layer (ONL). On the 3rd and 7th days, the levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were determined. The expression of retinal Bax, Bcl-2, and caspase-3 was quantified by Western blot and RT-PCR assays. 661 W strain of mice retinal photoreceptor cone cells were cultured in vitro and treated with 1 µm MNU. The cells in the treatment group were given 50 μM Sal A as an intervention. The growth of 661 W cells was observed and recorded under an inverted light microscope, and the activity of cells was detected by the MTT method. Results. Sal A treatment was effective against MNU-induced RD in mice at both 0.5 mg/kg/d and 1.0 mg/kg/d doses, and the protective effect was dose-dependent. Sal A can alleviate MNU-mediated alterations to retinal ERG activity and can support maintenance of the thickness of the ONL layer. Sal A treatment increases the expression of retinal SOD and reduces the lipid peroxidation product MDA, suggesting that its protective effect is related to the oxidation resistance. It can offset changes to the expression of apoptotic factors in the retina caused by MNU treatment. Sal A mitigates MNU-mediated damage to cultured mice photoreceptor cone cells 661 W in vitro. Conclusion. Sal A alleviates the damage caused by MNU to retinal photoreceptor cells in vivo and in vivo, and its protective effect is related to its antioxidant and antiapoptotic activities.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3