Enhancing Analytical Precision in Company Earnings Reports through Neurofuzzy System Development: A Comprehensive Investigation

Author:

Matkarimov Bakhyt1,Barlybayev Alibek12ORCID,Karimov Didar1ORCID

Affiliation:

1. Department of Artificial Intelligence Technologies, L.N. Gumilyov Eurasian National University, Astana 01000000, Kazakhstan

2. Higher School of Information Technology and Engineering, Astana International University, Astana 01000000, Kazakhstan

Abstract

The object of research is the fundamental and technical indicators of companies after the release of the earnings report. This study attempts to address the issue of understanding the impact of fundamental and technical analysis indicator dynamics on profits and loss news releases. This research provides an in-depth analysis of stock price forecasting models, focusing on the influence of earning report seasons as catalysts for stock price growth. The study explores the relationship between key financial indicators, including earnings per share (EPS), revenue, and the maximum price observed in the 52-week period of the previous year (MaxW52). A trading algorithm is developed based on the adaptive neurofuzzy inference system (ANFIS). Through a comprehensive analysis of the neural network’s training sample, it is concluded that abnormally large negative indicators have a profound impact on traders’ emotional reactions. This results leads to a hypothesis for further research, suggesting that report indicators may be processed by computational algorithms, potentially including artificial intelligence (AI). Consequently, the emergence of emotional trading robots managed by investment funds becomes a crucial area for investigation. Understanding the behavior of these algorithms enables proactive decision-making, allowing traders to leverage their knowledge and sell-purchased securities to these algorithms before their transactions occur. The implications of this research shed light on the evolving landscape of trading strategies and the role of emotionality in financial markets.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3