Complex Dynamical Behavior of a Two-Stage Colpitts Oscillator with Magnetically Coupled Inductors

Author:

Kamdoum Tamba V.12,Fotsin H. B.1,Kengne J.3,Kapche Tagne F.2,Talla P. K.4

Affiliation:

1. Department of Physics, Laboratory of Electronics and Signal Processing (LETS), Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon

2. Department of Telecommunication and Network Engineering, IUT-Fotso Victor of Bandjoun, University of Dschang, P.O. Box 134, Bandjoun, Cameroon

3. Department of Electrical Engineering, Laboratory of Automation and Applied Computer (LAIA), IUT-Fotso Victor of Bandjoun, University of Dschang, P.O. Box 134, Bandjoun, Cameroon

4. Department of Physics, Laboratory of Mechanics and Modelling of Physical Systems (L2MPS), Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon

Abstract

A five-dimensional (5D) controlled two-stage Colpitts oscillator is introduced and analyzed. This new electronic oscillator is constructed by considering the well-known two-stage Colpitts oscillator with two further elements (coupled inductors and variable resistor). In contrast to current approaches based on piecewise linear (PWL) model, we propose a smooth mathematical model (with exponential nonlinearity) to investigate the dynamics of the oscillator. Several issues, such as the basic dynamical behaviour, bifurcation diagrams, Lyapunov exponents, and frequency spectra of the oscillator, are investigated theoretically and numerically by varying a single control resistor. It is found that the oscillator moves from the state of fixed point motion to chaos via the usual paths of period-doubling and interior crisis routes as the single control resistor is monitored. Furthermore, an experimental study of controlled Colpitts oscillator is carried out. An appropriate electronic circuit is proposed for the investigations of the complex dynamics behaviour of the system. A very good qualitative agreement is obtained between the theoretical/numerical and experimental results.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3