Exploration of the Immuno-Inflammatory Potential Targets of Xinfeng Capsule in Patients with Ankylosing Spondylitis Based on Data Mining, Network Pharmacology, and Molecular Docking

Author:

Fang Yanyan12ORCID,Liu Jian1ORCID,Xin Ling1ORCID,Wen Jianting12ORCID,Guo Jinchen3,Huang Dan1ORCID,Li Xu1

Affiliation:

1. The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China

2. Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China

3. Anhui University of Chinese Medicine, Hefei, Anhui 230031, China

Abstract

Objective. This study aimed to ascertain the immuno-inflammatory molecular targets of Xinfeng capsules (XFC) in the treatment of ankylosing spondylitis (AS) based on data mining, network pharmacology, and molecular docking. Methods. The efficacy of XFC in the treatment of AS was assessed by clinical data mining. Network pharmacology was utilized to establish a network of the targets for XFC active ingredients in the treatment of AS. The binding mode and affinity of XFC active ingredients to the key targets for AS were predicted using molecular docking. Results. XFC significantly diminished immuno-inflammatory indicators of AS. In total, 208 targets of XFC were obtained from the TCMSP database and 629 disease targets of AS were screened from the GeneCards database, which were intersected to yield 57 targets of XFC in the treatment of AS. Protein-protein interaction, gene ontology, and Kyoto genome encyclopedia analyses showed that XFC might activate TNF and NF-κB signaling pathways. Quercetin, kaempferol, triptolide, and formononetin had free binding energies < -9 kcal/mol to inflammatory targets (TNF and PTGS2) in the molecular docking analysis of XFC-active ingredients, indicating that TNF and PTGS2 might be the targets of the action of XFC. Conclusions. Collectively, XFC had a significant therapeutic effect on AS. Specifically, the active ingredients of XFC, including quercetin, kaempferol, triptolide, and formononetin, inhibited the inflammatory response in AS by downregulating TNF and PTGS2 in the TNF and NF-κB signaling pathways.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3