Quasi-Identifier Recognition Algorithm for Privacy Preservation of Cloud Data Based on Risk Reidentification

Author:

Mansour Huda O.12ORCID,Siraj Maheyzah M.2ORCID,Ghaleb Fuad A.1ORCID,Saeed Faisal3ORCID,Alkhammash Eman H.4ORCID,Maarof Mohd A.1

Affiliation:

1. Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia

2. Department of Computer Science, Faculty of Computer Science and Information Technology, University of Kassala, Kassala 31111, Sudan

3. College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia

4. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

Cloud computing plays an essential role as a source for outsourcing data to perform mining operations or other data processing, especially for data owners who do not have sufficient resources or experience to execute data mining techniques. However, the privacy of outsourced data is a serious concern. Most data owners are using anonymization-based techniques to prevent identity and attribute disclosures to avoid privacy leakage before outsourced data for mining over the cloud. In addition, data collection and dissemination in a resource-limited network such as sensor cloud require efficient methods to reduce privacy leakage. The main issue that caused identity disclosure is quasi-identifier (QID) linking. But most researchers of anonymization methods ignore the identification of proper QIDs. This reduces the validity of the used anonymization methods and may thus lead to a failure of the anonymity process. This paper introduces a new quasi-identifier recognition algorithm that reduces identity disclosure which resulted from QID linking. The proposed algorithm is comprised of two main stages: (1) attribute classification (or QID recognition) and (2) QID dimension identification. The algorithm works based on the reidentification of risk rate for all attributes and the dimension of QIDs where it determines the proper QIDs and their suitable dimensions. The proposed algorithm was tested on a real dataset. The results demonstrated that the proposed algorithm significantly reduces privacy leakage and maintains the data utility compared to recent related algorithms.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3