Online Superficial Gas Velocity, Holdup, and Froth Depth Sensor for Flotation Cells

Author:

Leiva Claudio12ORCID,Acuña Claudio3ORCID,Bergh Luis3,Luukkanen Saija1ORCID,da Silva Cristóbal3

Affiliation:

1. Oulu Mining School, University of Oulu, 90570 Oulu, Finland

2. Department of Chemical Engineering, Universidad Católica del Norte, 1270709 Antofagasta, Chile

3. Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

Abstract

In flotation process, the efficiency and selectivity depend on mineralogy, particle size distribution and liberation, reagents added, mixing, and particle coverage. However, the kinetics of particle recovery is highly dependent on cell hydrodynamic and circuit configuration and operational strategy. Controlling froth depth and gas flow rate, measured as superficial gas velocity, is a straightforward alternative related to kinetics in the froth and collection zones. However, these parameters are not measured accurately. Froth depth measurement is based on a floating device coupled with a sonic sensor; this configuration presents hysteresis and deviation due to variation in the gas holdup and pulp density. In self-aspirated machines, there is no technology to measure gas velocity. To address this problem, the intelligent online gas dispersion sensor based on two concentric HDPE cylindres is proposed. The intelligent online gas dispersion sensor is based on two concentric HDPE cylinders. The methodology improves the accuracy of gas velocity calculation with a new algorithm. Froth depth measurement is based on two pressure transducers, reducing the uncertainty of the floating sonic sensor to 1 cm. Pulp bulk density is directly measured, and gas holdup can be estimated. Experimental results and industrial device validation indicate that the new intelligent system can measure superficial gas velocity (Jg) online and self-calibrate, with a 2% error, the froth depth error being ±1 cm. Therefore, a multiparameter sensor for measuring gas dispersion in industrial flotation cells was experimentally designed and validated in an industrial environment (TRL 8). In this context, the proposed online gas dispersion sensor emerges as a robust technology to improve the operation of the flotation process.

Funder

Universidad Católica del Norte

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3