Protective Effect of Photobiomodulation against Hydrogen Peroxide-Induced Oxidative Damage by Promoting Autophagy through Inhibition of PI3K/AKT/mTOR Pathway in MC3T3-E1 Cells

Author:

Zuo Xiaoshuang1ORCID,Wei Xinghui2,Ju Cheng1,Wang Xuankang1,Zhang Zhihao1,Ma Yangguang1,Zhu Zhijie1,Li Xin13,Song Zhiwen1,Luo Liang1,Hu Xueyu1ORCID,Wang Zhe1ORCID

Affiliation:

1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China

2. Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China

3. Hospital of People’s Liberation Army Joint Logistic Support Force, Dalian, Liaoning, China

Abstract

Photobiomodulation (PBM) has been repeatedly reported to play a major role in the regulation of osteoblast proliferation and mineralization. Autophagy is closely associated with various pathophysiological processes in osteoblasts, while its role in oxidative stress is even more critical. However, there is still no clear understanding of the mechanism of the role of autophagy in the regulation of osteoblast mineralization and apoptosis under oxidative stress by PBM. It was designed to investigate the impact of 808 nm PBM on autophagy and apoptosis in mouse preosteoblast MC3T3-E1 treated with hydrogen peroxide (H2O2) through PI3K/AKT/mTOR pathway. PBM could inhibit MC3T3-E1 cell apoptosis under oxidative stress and promote the expression of osteogenic proteins, while enhancing the level of autophagy. In contrast, 3-methyladenine (3-MA) inhibited the expression of osteoblast autophagy under oxidative stress conditions, increased apoptosis, and plus counteracted the effect of PBM on osteoblasts. We also found that PBM suppressed the activated PI3K/AKT/mTOR pathway during oxidative stress and induced autophagy in osteoblasts. PBM promoted autophagy of MC3T3 cells and was further blocked by 740 Y-P, which reversed the effect of PBM on MC3T3 cells with H2O2. In conclusion, PBM promotes autophagy and improves the level of osteogenesis under oxidative stress by inhibiting the PI3K/AKT/mTOR pathway. Our results can lay the foundation for the clinical usage of PBM in the treatment of osteoporosis.

Funder

Discipline Boost Project of the First Affiliated Hospital of Air Force Military Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3