Flipit Game Deception Strategy Selection Method Based on Deep Reinforcement Learning

Author:

He Weizhen12ORCID,Tan Jinglei1ORCID,Guo Yunfei1,Shang Ke12ORCID,Kong Guanhua12ORCID

Affiliation:

1. PLA Information Engineering University, Zhengzhou 450001, China

2. Purple Mountain Laboratories, Nanjing 211100, China

Abstract

The existing cyber deception decision-making model based on game theory primarily focuses on the selection of spatial strategies, which ignores the optimal defense timing and can affect the execution of a defense strategy. Consequently, this paper presents a method for selecting deception strategies based on a multi-stage Flipit game. Firstly, based on the analysis of cyber deception attack and defense, we propose a concept of moving deception attack surface and analyze the characteristics of deception attack and defense interaction behaviors based on the Flipit game model. The Flipit game model is then utilized to create a single-stage deception spatial-temporal decision-making model. Additionally, we introduce the discount factor and transition probability based on a single-stage game model and construct a multi-stage cyber deception model. We provide the utility function of the multi-stage game model, and design a Proximal Policy Optimization algorithm based on deep reinforcement learning to compute the defender’s optimal spatial-temporal strategies. Finally, we utilize an application example to validate the effectiveness of the model and the advantages of the proposed algorithm in generating the multi-stage cyber deception strategy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bias Mitigation in Federated Learning for Edge Computing;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3