Affiliation:
1. Department of Mechanical Convergence Engineering, Graduate School of Hanyang University, Seoul 04763, Republic of Korea
2. School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
Abstract
Despite widespread recognition of the serious risk of battery thermal runaway (BTR) in lithium-ion batteries, the process and associated external ignition mechanism remain poorly understood. In this study, BTR was measured using thermodynamics and visualization techniques in 10 lithium-ion batteries under thermal abuse conditions. The venting speed was measured by particle image velocimetry and boundary detection. The external ignition mechanism was characterized in terms of flame area. The average BTR onset temperature across the 10 test batteries was 215.6°C. The average maximum temperature was 831.1°C, and the variation between experiments was high compared with the BTR onset temperature due to swelling, repairing, and venting. BTR occurred in four stages (ejection of vent gas with flame, extinction of flame, random and simultaneous ignition, and flame propagation and flame jet formation). The initial average venting speed was approximately 123.8 m/s. The structural and venting speeds of vent gas were similar after a stable flame jet formed. The speed of the core of the gas jet peaked at 20 to 40 m/s. The venting speed decreased as the distance from the jet core increased.
Funder
Ministry of Trade, Industry and Energy
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献