Validation of Machine Learning-Based Assessment of Major Depressive Disorder from Paralinguistic Speech Characteristics in Routine Care

Author:

Bauer Jonathan F.1ORCID,Gerczuk Maurice2ORCID,Schindler-Gmelch Lena1ORCID,Amiriparian Shahin2ORCID,Ebert David Daniel3ORCID,Krajewski Jarek4ORCID,Schuller Björn25ORCID,Berking Matthias1ORCID

Affiliation:

1. Department for Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany

2. Chair of Embedded Intelligence for Health Care & Wellbeing, University of Augsburg, 86159 Augsburg, Germany

3. Department for Sport and Health Sciences, Technical University Munich, 80992 Munich, Germany

4. Rhenish University of Applied Science Cologne, 50676 Cologne, Germany

5. Group on Language, Audio, & Music, Imperial College London, London SW7 2AZ, UK

Abstract

New developments in machine learning-based analysis of speech can be hypothesized to facilitate the long-term monitoring of major depressive disorder (MDD) during and after treatment. To test this hypothesis, we collected 550 speech samples from telephone-based clinical interviews with 267 individuals in routine care. With this data, we trained and evaluated a machine learning system to identify the absence/presence of a MDD diagnosis (as assessed with the Structured Clinical Interview for DSM-IV) from paralinguistic speech characteristics. Our system classified diagnostic status of MDD with an accuracy of 66% (sensitivity: 70%, specificity: 62%). Permutation tests indicated that the machine learning system classified MDD significantly better than chance. However, deriving diagnoses from cut-off scores of common depression scales was superior to the machine learning system with an accuracy of 73% for the Hamilton Rating Scale for Depression (HRSD), 74% for the Quick Inventory of Depressive Symptomatology–Clinician version (QIDS-C), and 73% for the depression module of the Patient Health Questionnaire (PHQ-9). Moreover, training a machine learning system that incorporated both speech analysis and depression scales resulted in accuracies between 73 and 76%. Thus, while findings of the present study demonstrate that automated speech analysis shows the potential of identifying patterns of depressed speech, it does not substantially improve the validity of classifications from common depression scales. In conclusion, speech analysis may not yet be able to replace common depression scales in clinical practice, since it cannot yet provide the necessary accuracy in depression detection. This trial is registered with DRKS00023670.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3