Early Detection of Cognitive Decline Using Machine Learning Algorithm and Cognitive Ability Test

Author:

Revathi A.1ORCID,Kaladevi R.2ORCID,Ramana Kadiyala3ORCID,Jhaveri Rutvij H.4ORCID,Rudra Kumar Madapuri3ORCID,Sankara Prasanna Kumar M.3ORCID

Affiliation:

1. Department of Computational Intelligence, SRM Institute of Science and Technology, Chennai, India

2. Department of Computer Science and Engineering, Saveetha Engineering College, Chennai, India

3. Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, Andhra Pradesh, India

4. Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, India

Abstract

Elderly people are the assets of the country and the government can ensure their peaceful and healthier life. Life expectancy of individuals has expanded with technological advancements and survey tells that the elderly population will become double in the year 2030. The noninfectious cognitive dysfunction is the most important risk factor among elderly people due to a decline in their physiological function. Alzheimer, Vascular Dementia, and Dementia are the key reasons for cognitive inabilities. These diseases require manual assistance, which is difficult to provide in this fast-growing world. Prevention and early detection are the wise solution for the above diseases. Diabetes and hypertension are considered as main risk factors allied with Alzheimer's disease. Our proposed work applies a two-stage classification technique to improve prediction accuracy. In the first stage, we train a Support vector machine and a Random Forest algorithm to analyze the influence of diabetes and high blood pressure on cognitive decline. In the second stage, the cognitive function of the person with the possibility of Dementia is assessed using the neuropsychological test called Cognitive Ability Test (CAT). Multinomial Logistic Regression algorithm is applied to CAT results to predict the possibility of cognitive decline in their postlife. We classified the risk factor using the operational definitions: “No Alzheimer’s,” “Uncertain Alzheimer’s,” and “Definite Alzheimer’s”. SVM of stage 1 classifier predicts with an accuracy of 0.86 and Random Forest with an accuracy of 0.71. Multinomial Logistic algorithm of stage 2 classifier accuracy is 0.89. The proposed work enables early prediction of a person at risk of Alzheimer's Disease using clinical data.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3