Cuckoo Algorithm Based on Global Feedback

Author:

Liu Xingyu1ORCID,Wu Tao1ORCID,Lai Wuxing2ORCID,Yuan Hu1,Kou Qilong3,Yu Jingping3

Affiliation:

1. School of Software, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. Tencent Technology (Shenzhen) Co. Ltd., Shenzhen 518000, China

Abstract

This article proposes a cuckoo algorithm (GFCS) based on the global feedback strategy and innovatively introduces a “re-fly” mechanism. In GFCS, the process of the algorithm is adjusted and controlled by a dynamic global variable, and the dynamic global parameter also serves as an indicator of whether the algorithm has fallen into a local optimum. According to the change of the global optimum value of the algorithm in each round, the dynamic global variable value is adjusted to optimize the algorithm. In addition, we set new formulas for the other main parameters, which are also adjusted by the dynamic global variable as the algorithm progresses. When the algorithm converges prematurely and falls into a local optimum, the current optimum is retained, and the algorithm is initialized and re-executed to find a better value. We define the previous process as “re-fly.” To verify the effectiveness of GFCS, we conducted extensive experiments on the CEC2013 test suite. The experimental results show that the GFCS algorithm has better performance compared to other algorithms when considering the quality of the obtained solution.

Funder

Tencent Technology (Shenzhen) Co., Ltd

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water Quality Monitoring System Based on Improved Kalman Filter Algorithm;2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3