Redox Profiling Reveals Clear Differences between Molecular Patterns of Wound Fluids from Acute and Chronic Wounds

Author:

Bodnár Edina1,Bakondi Edina2,Kovács Katalin3,Hegedűs Csaba2,Lakatos Petra2,Robaszkiewicz Agnieszka4,Regdon Zsolt2,Virág László23ORCID,Szabó Éva1ORCID

Affiliation:

1. Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

2. Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

3. MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary

4. Department of General Biophysics, University of Łódź, Łódź, Poland

Abstract

Wound healing is a complex multiphase process which can be hampered by many factors including impaired local circulation, hypoxia, infection, malnutrition, immunosuppression, and metabolic dysregulation in diabetes. Redox dysregulation is a common feature of many skin diseases demonstrated by virtually all cell types in the skin with overproduction of reactive oxygen and nitrogen species. The objective of this study was to characterize the redox environment in wound fluids and sera from patients suffering from chronic leg ulcers (n=19) and acute wounds (bulla fluids from second degree burns; n=11) with serum data also compared to those from healthy volunteers (n=7). Significantly higher concentrations of TNF-α, interleukine-8, vascular endothelial growth factor, and lactate dehydrogenase (measure of cell damage) were found in fluids from chronic wounds compared to acute ones. The extent of protein carbonylation (measure of protein oxidation), lipid peroxidation, and tyrosine nitration (indicator of peroxynitrite production) was similar in acute and chronic wound fluids, while radical scavenging activity and glutathione (GSH) levels were elevated in chronic wound fluids compared to acute wounds. Sera were also assessed for the same set of parameters with no significant differences detected. Nitrotyrosine (the footprint of the potent oxidant peroxynitrite) and poly(ADP-ribose) (the product of the DNA damage sensor enzyme PARP-1) could be detected in wound biopsies. Our data identify multiple signs of redox stress in chronic wounds with notable differences. In chronic wounds, elevations in antioxidant levels/activities may indicate compensatory mechanisms against inflammation. The presence of nitrotyrosine and poly(ADP-ribose) in tissues from venous leg ulcers indicate peroxynitrite production and PARP activation in chronic wounds.

Funder

Narodowe Centrum Nauki

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3