Network Construction for Bearing Fault Diagnosis Based on Double Attention Mechanism

Author:

Wu QingE1ORCID,Zong Tao12ORCID,Cheng Wenfang2,Li Yong3,Li Penglei1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

2. Polar Research Institute of China, Shanghai 200136, China

3. College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

Aiming at the difficulty of feature extraction in the case of multicomponent and strong noise in the traditional rolling bearing fault diagnosis method, this paper proposes a bearing fault diagnosis network with double attention mechanism. The original signal with noise is decomposed into a series of intrinsic mode functions (IMFs) by the Empirical Mode Decomposition method. The Pearson correlation coefficient is discussed to filter the IMFs components for signal reconstruction. The spatial features of the reconstructed signal are extracted by attention convolutional networks. Then, time series features are extracted based on the long short-term memory method. Furthermore, the importance of temporal features is measured through a temporal attention mechanism. The Softmax layer of the constructed network is used as the classifier for fault diagnosis. Comparing this method with the existing methods of experiments, the proposed method has not only better diagnosis accuracy but also stronger antiinterference ability and generalization ability, which can accurately diagnose and classify the bearing fault types. The fault diagnosis accuracy rate for each load is above 99%.

Funder

Key Science and Technology Program of Henan Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinational Framework for Classification of Bearing Faults in Rotating Machines;Journal of Computing and Information Science in Engineering;2023-10-27

2. Fault Diagnosis of Electric Submersible Pumps Using a Three‐Stage Multiscale Feature Transformation Combined with CNN–SVM;Energy Technology;2023-07-30

3. Bearing Fault diagnosis based on convolution Neural Network with Multi-Attention Mechanism;2023 4th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM);2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3