Detection of Benign and Malignant Tumors in Skin Empowered with Transfer Learning

Author:

Ghazal Taher M.12,Hussain Sajid3ORCID,Khan Muhammad Farhan4,Khan Muhammad Adnan35ORCID,Said Raed A. T.6,Ahmad Munir7ORCID

Affiliation:

1. Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

2. School of Information Technology, Skyline University College, University City Sharjah, 1797 Sharjah, UAE

3. Riphah School of Computing and Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore 54000, Pakistan

4. Department of Forensic Sciences, University of Health Sciences, Lahore 54000, Pakistan

5. Pattern Recognition and Machine Learning, Department of Software, Gachon University, Seongnam 13557, Republic of Korea

6. Faculty of Management, Canadian University, Dubai 117781, UAE

7. School of Computer Science, National College of Business Administration and Economics, Lahore 54000, Pakistan

Abstract

Skin cancer is a major type of cancer with rapidly increasing victims all over the world. It is very much important to detect skin cancer in the early stages. Computer-developed diagnosis systems helped the physicians to diagnose disease, which allows appropriate treatment and increases the survival ratio of patients. In the proposed system, the classification problem of skin disease is tackled. An automated and reliable system for the classification of malignant and benign tumors is developed. In this system, a customized pretrained Deep Convolutional Neural Network (DCNN) is implemented. The pretrained AlexNet model is customized by replacing the last layers according to the proposed system problem. The softmax layer is modified according to binary classification detection. The proposed system model is well trained on malignant and benign tumors skin cancer dataset of 1920 images, where each class contains 960 images. After good training, the proposed system model is validated on 480 images, where the size of images of each class is 240. The proposed system model is analyzed using the following parameters: accuracy, sensitivity, specificity, Positive Predicted Values (PPV), Negative Predicted Value (NPV), False Positive Ratio (FPR), False Negative Ratio (FNR), Likelihood Ratio Positive (LRP), and Likelihood Ratio Negative (LRN). The accuracy achieved through the proposed system model is 87.1%, which is higher than traditional methods of classification.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3