Level Set Based Hippocampus Segmentation in MR Images with Improved Initialization Using Region Growing

Author:

Jiang Xiaoliang12ORCID,Zhou Zhaozhong1,Ding Xiaokang1,Deng Xiaolei1,Zou Ling3,Li Bailin2

Affiliation:

1. College of Mechanical Engineering, Quzhou University, Quzhou, Zhejiang 324000, China

2. College of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

3. Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610031, China

Abstract

The hippocampus has been known as one of the most important structures referred to as Alzheimer’s disease and other neurological disorders. However, segmentation of the hippocampus from MR images is still a challenging task due to its small size, complex shape, low contrast, and discontinuous boundaries. For the accurate and efficient detection of the hippocampus, a new image segmentation method based on adaptive region growing and level set algorithm is proposed. Firstly, adaptive region growing and morphological operations are performed in the target regions and its output is used for the initial contour of level set evolution method. Then, an improved edge-based level set method utilizing global Gaussian distributions with different means and variances is developed to implement the accurate segmentation. Finally, gradient descent method is adopted to get the minimization of the energy equation. As proved by experiment results, the proposed method can ideally extract the contours of the hippocampus that are very close to manual segmentation drawn by specialists.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3