Optimizing Decision Making on Business Processes Using a Combination of Process Mining, Job Shop, and Multivariate Resource Clustering

Author:

Prasetyo Hanung Nindito12ORCID,Sarno Riyanarto1ORCID,Wijaya Dedy Rahman2,Budiraharjo Raden13,Waspada Indra14,Sungkono Kelly Rossa1,Septiyanto Abdullah Faqih1

Affiliation:

1. Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2. Department of Information System Diploma, Telkom University, Bandung, Indonesia

3. Department of Information Systems, Institut Teknologi Nasional, Bandung, Indonesia

4. Department of Informatics, Universitas Diponegoro, Semarang, Indonesia

Abstract

The current business environment has no room for inefficiency as it can cause companies to lose out to their competitors, to lose customer trust, and to experience cost overruns. Business processes within the company continue to grow and cause them to run more complex. The large scale and complexity of business processes pose a challenge in improving the quality of process model because the effectiveness of time and the efficiency of existing resources are the biggest challenges. In the context of optimizing business processes with a process mining approach, most current process models are optimized with a trace clustering approach to explore the model and to perform analysis on the resulting process model. Meanwhile, in the event log data, not only the activities but also the other resources, such as records of employee or staff working time, process service time, and processing costs, are recorded. This article proposes a mechanism alternative to optimize business processes by exploring the resources that occur in the process. The mechanism is carried out in three stages. The first stage is optimizing the job shop scheduling method from the generated event log. Scheduling the time becomes a problem in the job shop. Utilizing the right time can increase the effectiveness of performance in order to reduce costs. Scheduling can be defined as the allocation of multiple jobs in a series of machines, in which each machine only does one job at a time. In general, scheduling becomes a problem when sequencing the operations and allocating them into specific time slots without prolonging the technical and capacity constraints. The second stage is generating the resource value that is recorded in the event log from the results of analysis of the previous stage, namely, job shop scheduling. The resource values are multivariate and then clustered to determine homogeneous clusters. The last stage is optimizing the nonlinear multipolynomials in the homogeneous cluster formed by using the Hessian solution. The results obtained are analyzed to get recommendations on business processes that are appropriate for the company’s needs. The impact of long waiting times will increase service costs, but by improving workload, costs can be reduced. The process model and the value of service costs resulting from the mechanism in the research can be a reference for process owners in evaluating and improving ongoing processes.

Funder

Institut Teknologi Sepuluh Nopember

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3