Ultrasound Elastography under Deep Learning Algorithm to Analyze the Therapeutic Effect of Clustered Regularly Interspaced Short Palindromic Repeats Short Hairpin Ribonucleic Acid Nanoparticles on Cervical Cancer

Author:

Li Minghui1ORCID,Li Weiwei1ORCID,Zhao Liang1ORCID

Affiliation:

1. Department of Ultrasound Diagnosis, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China

Abstract

This study aimed to analyze the effect of the deep learning algorithm on ultrasound elastography on the treatment of cervical cancer with clustered regularly interspaced short palindromic repeats (CRISPR) short hairpin ribonucleic acid (shRNA) nanoparticles, aiming to provide a reference for the clinical application of deep learning to analyze the therapeutic effect of the disease. In this study, CRISPR and shRNA plasmid nanoparticle drugs were used to treat 55 patients with cervical cancer in the experimental group, and normal saline was injected to another 53 patients in the control group, so compare the effect of nanoparticles in the treatment of cervical cancer. Professional doctors and the recurrent neural network (RNN) intelligent algorithm were used to score cervical cancer based on the ultrasound elastograph images by taking blue, green, and red (BGR) as diagnosis criteria. As a result, the experimental group had a total of 217 points before drug administration and a total of 224 points after drug administration. Each patient had an average increase of 0.13 points. The control group had a total of 200 points before drug administration and a total of 223 points after drug administration, and each patient had an average increase of 0.43 points. The experimental group was obviously different from the control group ( P < 0.05 ). Each tissue image output by the RNN was clearer than the original image, and the score given by intelligent calculation was faster than that of professional doctors. The monitoring effect of the deep learning RNN intelligent algorithm on the therapeutic effect of nanomedicine was analyzed. It was found that the average accuracy of the experimental group and the control group was 98.95% and 90.34%, respectively; and the experimental group was greatly different from the control group ( P < 0.05 ). In short, nano-CRISPR and shRNA drugs had remarkable effects on the treatment of cervical cancer, and the scores given by the deep learning intelligent algorithm were faster and more accurate, which provided theoretical guidance for the clinical application of deep learning algorithms to analyze the treatment effects of diseases.

Funder

Natural Science Foundation of Xinjiang Province

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3