Mycosynthesis and Physicochemical Characterization of Vanadium Oxide Nanoparticles Using the Cell-Free Filtrate of Fusarium oxysporum and Evaluation of Their Cytotoxic and Antifungal Activities

Author:

Gholami-Shabani Mohammadhassan1ORCID,Sotoodehnejadnematalahi Fattah1ORCID,Shams-Ghahfarokhi Masoomeh2ORCID,Eslamifar Ali3ORCID,Razzaghi-Abyaneh Mehdi4ORCID

Affiliation:

1. Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran

3. Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran

4. Department of Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran

Abstract

Green nanotechnology is an expanding branch of knowledge in relation to producing efficient antifungal compounds with potential applications as nanomedicines. The aim of the current investigation was to mycosynthesize functional vanadium oxide nanoparticles (V2O5NPs) by Fusarium oxysporum cell-free filtrate using ammonium metavanadate (NH4VO3) as the substrate. Various spectrometric methods and electron microscopy were used to confirm the production of mycosynthesized V2O5NPs. FESEM and TEM images showed that V2O5NPs were in the size ranging from 10 to 20 nm in a spherical shape. The XRD pattern revealed the presence of crystalline, dominantly spherical V2O5NPs in the sample with a size ranging from 10 to 20 nm. The XRD peaks 15.2, 20.1, 21.6, 26.1, 30.9, 32.2, 33.1, 34.2, 41.0, 41.8, 45.3, 47.2, 48.6, 51.1, 51.9, 55.4, and 58.8 can be assigned to the plane of vanadium crystals and indicate that the V2O5NPs were face-centered, cubic, and crystalline in nature. The FTIR results showed the presence of some biomolecules in fungal cell-free filtrate that act as a bioreducing and capping agent for V2O5NP mycosynthesis. DLS showed that the size of V2O5NPs was 10-20 nm. Zeta potential showed −35.09 mV for V2O5NPs with a single peak. Study of antifungal activity of V2O5NPs against various pathogenic fungi in concentrations of 5, 25, 50, and 100 μg/mL showed that V2O5NPs strongly inhibited both mycelium growth (20.3 to 67.3%) and spore germination (64.8 to 89.9%) dose-dependently. V2O5NPs showed strong cytotoxicity against breast cancer cell-line MCF-7 with an I C 50 value of 55.89 μg/mL. Microscopy images showed morphological changes and reduction of cancer cell populations in V2O5NP-treated MCF-7 cell-line. Taken together, our results demonstrated that bioactive V2O5NPs successfully synthesized by F. oxysporum could be considered a potential candidate in drug development against life-threatening fungal pathogens and as a feasible anticancer agent.

Funder

National Institute for Medical Research Development

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3