Automatic Detection of High-Frequency Oscillations Based on an End-to-End Bi-Branch Neural Network and Clinical Cross-Validation

Author:

Liu Zimo1ORCID,Wei Penghu2,Wang Yiping1,Yang Yanfeng2,Dai Yang2,Cao Gongpeng1,Kang Guixia13ORCID,Shan Yongzhi2ORCID,Liu Da3,Xie Yongzhao3

Affiliation:

1. Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China

2. Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China

3. Beijing Baihui Weikang Technology Co., Ltd., Beijing 100083, China

Abstract

Accurate identification of high-frequency oscillation (HFO) is an important prerequisite for precise localization of epileptic foci and good prognosis of drug-refractory epilepsy. Exploring a high-performance automatic detection method for HFOs can effectively help clinicians reduce the error rate and reduce manpower. Due to the limited analysis perspective and simple model design, it is difficult to meet the requirements of clinical application by the existing methods. Therefore, an end-to-end bi-branch fusion model is proposed to automatically detect HFOs. With the filtered band-pass signal (signal branch) and time-frequency image (TFpic branch) as the input of the model, two backbone networks for deep feature extraction are established, respectively. Specifically, a hybrid model based on ResNet1d and long short-term memory (LSTM) is designed for signal branch, which can focus on both the features in time and space dimension, while a ResNet2d with a Convolutional Block Attention Module (CBAM) is constructed for TFpic branch, by which more attention is paid to useful information of TF images. Then the outputs of two branches are fused to realize end-to-end automatic identification of HFOs. Our method is verified on 5 patients with intractable epilepsy. In intravalidation, the proposed method obtained high sensitivity of 94.62%, specificity of 92.7%, and F1-score of 93.33%, and in cross-validation, our method achieved high sensitivity of 92.00%, specificity of 88.26%, and F1-score of 89.11% on average. The results show that the proposed method outperforms the existing detection paradigms of either single signal or single time-frequency diagram strategy. In addition, the average kappa coefficient of visual analysis and automatic detection results is 0.795. The method shows strong generalization ability and high degree of consistency with the gold standard meanwhile. Therefore, it has great potential to be a clinical assistant tool.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3