RNA Degradation inStaphylococcus aureus: Diversity of Ribonucleases and Their Impact

Author:

Bonnin Rémy A.1,Bouloc Philippe1

Affiliation:

1. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France

Abstract

The regulation of RNA decay is now widely recognized as having a central role in bacterial adaption to environmental stress. Here we present an overview on the diversity of ribonucleases (RNases) and their impact at the posttranscriptional level in the human pathogenStaphylococcus aureus. RNases in prokaryotes have been mainly studied in the two model organismsEscherichia coliandBacillus subtilis. Based on identified RNases in these two models, putative orthologs have been identified inS. aureus. The main staphylococcal RNases involved in the processing and degradation of the bulk RNA are (i) endonucleases RNase III and RNase Y and (ii) exonucleases RNase J1/J2 and PNPase, having 5′ to 3′ and 3′ to 5′ activities, respectively. The diversity and potential roles of each RNase and of Hfq and RppH are discussed in the context of recent studies, some of which are based on next-generation sequencing technology.

Funder

Agence National pour la Recherche

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3