Affiliation:
1. Instituto de Materiales de Misiones (IMAM), CONICET-UNaM, 1552 Félix de Azara Street, Posadas, 3300 Misiones, Argentina
2. Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, 1552 Félix de Azara Street, Posadas, 3300 Misiones, Argentina
Abstract
The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas
Subject
Biomedical Engineering,Biomaterials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献