Lightweight Neural Network-Based Viewport Prediction for Live VR Streaming in Wireless Video Sensor Network

Author:

Chen Xiaolei1ORCID,Cao Baoning1ORCID,Ahmad Ishfaq2

Affiliation:

1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China

2. Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

Abstract

Live virtual reality (VR) streaming (a.k.a., 360-degree video streaming) has become increasingly popular because of the rapid growth of head‐mounted displays and 5G networking deployment. However, the huge bandwidth and the energy required to deliver live VR frames in the wireless video sensor network (WVSN) become bottlenecks, making it impossible for the application to be deployed more widely. To solve the bandwidth and energy challenges, VR video viewport prediction has been proposed as a feasible solution. However, the existing works mainly focuses on the bandwidth usage and prediction accuracy and ignores the resource consumption of the server. In this study, we propose a lightweight neural network-based viewport prediction method for live VR streaming in WVSN to overcome these problems. In particular, we (1) use a compressed channel lightweight network (C-GhostNet) to reduce the parameters of the whole model and (2) use an improved gate recurrent unit module (GRU-ECA) and C-GhostNet to process the video data and head movement data separately to improve the prediction accuracy. To evaluate the performance of our method, we conducted extensive experiments using an open VR user dataset. The experiments results demonstrate that our method achieves significant server resource saving, real-time performance, and high prediction accuracy, while achieving low bandwidth usage and low energy consumption in WVSN, which meets the requirement of live VR streaming.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3