Affiliation:
1. Faculty of Special Equipment, Le Quy Don Technical University, Hanoi 100000, Vietnam
2. Advanced Technology Center, Le Quy Don Technical University, Hanoi 100000, Vietnam
Abstract
This paper carries out the static bending analysis of symmetric three-layer functionally graded sandwich beams, in which each layer is made from different functionally graded materials, and they are connected by shear connectors due to sliding movement. The finite element formulations are based on Timoshenko’s first-order shear deformation beam theory (FSDT) and the finite element method to establish the equilibrium equation of beams. The calculation program is coded in the MATLAB environment, and then verification examples are given out to compare the numerical data of present work with those of exact open sources. The impact of several geometrical and material parameters on the mechanical response of the structure, such as the height-to-length ratio, boundary conditions, volume fraction index, and especially the shear coefficient of connectors, is being explored. When designing and using these types of structures in engineering practice, the computed results can be utilized as a valid reference.
Funder
Le Quy Don Technical University
Subject
General Engineering,General Mathematics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献