An Adaptive Smoothness Parameter Strategy for Variational Optical Flow Model

Author:

Alsharif Hussain Zaid H.1,Shu Tong1ORCID,Zhu Bin2ORCID,Farisi Zeyad3

Affiliation:

1. School of Business, Hunan University, Changsha, Hunan, China

2. School of Mechanical and Electronic Engineering, Jiang Xi College of Applied Technology, Ganzhou, China

3. Applied College, Taibah University, Medinah, Saudi Arabia

Abstract

The smoothness parameter is used to balance the weight of the data term and the smoothness term in variational optical flow model, which plays very significant role for the optical flow estimation, but existing methods fail to obtain the optimal smoothness parameters (OSP). In order to solve this problem, an adaptive smoothness parameter strategy is proposed. First, an amalgamated simple linear iterative cluster (SLIC) and local membership function (LMF) algorithm is used to segment the entire image into several superpixel regions. Then, image quality parameters (IQP) are calculated, respectively, for each superpixel region. Finally, a neural network model is applied to compute the smoothness parameter by these image quality parameters of each superpixel region. Experiments were done in three public datasets (Middlebury, MPI_Sintel, and KITTI) and our self-constructed outdoor dataset with the proposed method and other existing classical methods; the results show that our OSP method achieves higher accuracy than other smoothness parameter selection methods in all these four datasets. Combined with the dual fractional order variational optical flow model (DFOVOFM), the proposed model shows better performance than other models in scenes with illumination inhomogeneity and abnormity. The OSP method fills the blank of the research of adaptive smoothness parameter, pushing the development of the variational optical flow models.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3