Improved Power Flow Algorithm for VSC-HVDC System Based on High-Order Newton-Type Method

Author:

Wei Yanfang1,He Qiang2,Sun Yonghui3,Sun Yanzhou1,Ji Cong4

Affiliation:

1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China

2. Economics and Business College, Qingdao Technological University, Qingdao 266520, China

3. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China

4. Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China

Abstract

Voltage source converter (VSC) based high-voltage direct-current (HVDC) system is a new transmission technique, which has the most promising applications in the fields of power systems and power electronics. Considering the importance of power flow analysis of the VSC-HVDC system for its utilization and exploitation, the improved power flow algorithms for VSC-HVDC system based on third-order and sixth-order Newton-type method are presented. The steady power model of VSC-HVDC system is introduced firstly. Then the derivation solving formats of multivariable matrix for third-order and sixth-order Newton-type power flow method of VSC-HVDC system are given. The formats have the feature of third-order and sixth-order convergence based on Newton method. Further, based on the automatic differentiation technology and third-order Newton method, a new improved algorithm is given, which will help in improving the program development, computation efficiency, maintainability, and flexibility of the power flow. Simulations of AC/DC power systems in two-terminal, multi-terminal, and multi-infeed DC with VSC-HVDC are carried out for the modified IEEE bus systems, which show the effectiveness and practicality of the presented algorithms for VSC-HVDC system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3