miR-342-3p Inhibits Acute Myeloid Leukemia Progression by Targeting SOX12

Author:

Wang Ying1,Guo Xiaonan1,Wang Lihua1,Xing Lina1,Zhang Xiaolei1,Ren Jinhai1ORCID

Affiliation:

1. Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China

Abstract

Background. It is well known that microRNAs (miRNAs) interfere with the progression of various human malignancies. This article is aimed at exploring the regulating role of miR-342-3p in acute myeloid leukemia (AML) and its mechanism. Methods. We used the Gene Expression Omnibus (GEO) database to determine miR-342-3p differential expression patterns in AML patients’ plasma and cells as well as healthy individuals’ plasma and T cells. Quantitative real-time PCR and Western blotting were performed for plasma and cell miR-342-3p and SRY-related high-mobility-group box (SOX12) expression quantification, and cell counting kit-8 assay and flow cytometry were used for the determination of AML cell growth, cycle, and apoptosis. A dual-luciferase reporter gene assay was further carried out to identify the targeted association between miR-342-3p and SOX12 mRNA 3 UTR after prediction by a bioinformatics website. Pearson’s correlation analysis was performed to analyze the connection between miR-342-3p and SOX12 expressions. The LinkedOmics database was utilized to explore the downstream pathways in which SOX12 was enriched. Results. Evidently downregulated plasma miR-342-3p and markedly elevated SOX12 were observed in AML patients versus healthy individuals. miR-342-3p mimics suppressed AML cell growth, enhanced apoptosis, and induced G0/G1 phase arrest; conversely, enhanced capacity of AML cells to proliferate, suppressed apoptosis, and accelerated cell cycle were observed after treatment with miR-342-3p inhibitors. SOX12 was confirmed as miR-342-3p’s target gene. Overexpressing or knocking down SOX12 reversed miR-342-3p’s impacts on AML cell growth, apoptosis, and cycle. Upregulated SOX12 was positively related to DNA replication and RNA polymerase signaling pathways. Conclusion. miR-342-3p affects apoptosis of AML cells and their ability to proliferate via targeted regulation of SOX12.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3