Leveraging a Neuroevolutionary Approach for Classifying Violent Behavior in Video

Author:

Flores-Munguía Carlos1ORCID,Ortiz-Bayliss José C.1ORCID,Terashima-Marín Hugo1ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias Ave, Eugenio Garza Sada 2501 Sur Col, Tecnológico C.P. 64849, Monterrey, Nuevo Leon, Mexico

Abstract

Security has become a critical issue for complex and expensive systems and day-to-day situations. In this regard, the analysis of surveillance cameras is a critical issue usually restricted to the number of people devoted to such a task, their knowledge and judgment. Nonetheless, different approaches have arisen to automate this task in recent years. These approaches are mainly based on machine learning and benefit from developing neural networks capable of extracting underlying information from input videos. Despite how competent those networks have proved to be, developers must face the challenging task of defining both the architecture and hyperparameters that allow such networks to work adequately and optimize the use of computational resources. In short, this work proposes a model that generates, through a genetic algorithm, neural networks for behavior classification within videos. Two types of neural networks evolved as part of this work, shallow and deep, which are structured on dense and 3D convolutional layers. Each network requires a particular type of input data: the evolution of the pose of people in the video and video sequences, respectively. Shallow neural networks use a direct encoding approach to map each part of the chromosome into a phenotype. In contrast, deep neural networks use indirect encoding, blueprints representing entire networks, and modules to depict layers and their connections. Our approach obtained relevant results when tested on the Kranok-NV dataset and evaluated with standard metrics used for similar classification tasks.

Funder

Universidad de Monterrey

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3