The mTOR/GCLc/GSH Pathway Mediates the Dose-Dependent Bidirectional Regulation of ROS Induced by TiO2NPs in Neurogenic Cells

Author:

Mao Zhilei123ORCID,Li Shushu4ORCID,Zhang Lina1ORCID,Yao Mengmeng23,Zhou Zhu5,Chen Minjian23ORCID

Affiliation:

1. Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003 Jiangsu, China

2. State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211100, China

3. Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211100, China

4. Changzhou Center for Disease Control and Prevention, Changzhou, 213022 Jiangsu, China

5. Department of Chemistry, York College, The City University of New York, 94-20 Guy R Brewer Blvd, Jamaica, NY 11451, USA

Abstract

Objective. The effect of TiO2NP exposure on the nervous system and the underlying mechanism remain unclear. The antioxidant effect of TiO2NPs at a low dose was newly found in our study, which was different from the effect at high dose. This study is aimed at exploring the mechanism underlying the antioxidant effects of TiO2NPs at low dose and the induction of ROS accumulation by TiO2NPs at high dose in neurogenic cell lines.Methods. We measured the changes in key molecules in the ROS regulation pathway by western blotting, flow cytometry, and commercial assay kits, and these key molecules were further evaluated to verify their interactions and roles using SH-SY5Y, U251, and SK-N-SH cell lines treated with TiO2NPs.Results. Our results showed that the weak antioxidant effect at low dose was caused by mTOR/GCLc-induced GSH overproduction and GSH-Px activity impairment. ROS accumulation at high dose was caused by a mTOR/GCLc-mediated decrease in GSH production, GSH-Px activity impairment, and dramatic ROS production. Furthermore, we found that the ROS species were mainly O2-⋅, and that SOD played a crucial role in reducing O2-⋅levels before the mTOR protein was activated.Conclusion. We revealed the mechanism underlying the bidirectional regulation of ROS induced by TiO2NPs at different doses in neurogenic cell lines. Our study emphasized the potential neurotoxic effects of NPs at low dose, which should arouse concern about their safety.

Funder

Nanjing Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3