5G Converged Network Resource Allocation Strategy Based on Reinforcement Learning in Edge Cloud Computing Environment

Author:

Li Xuezhu1ORCID

Affiliation:

1. Department of Information Engineering, Suzhou University, Suzhou, Anhui 234000, China

Abstract

Aiming at the problem that computing power and resources of Mobile Edge Computing (MEC) servers are difficult to process long-period intensive task data, this study proposes a 5G converged network resource allocation strategy based on reinforcement learning in edge cloud computing environment. n order to solve the problem of insufficient local computing power, the proposed strategy offloads some tasks to the edge of network. Firstly, we build a multi-MEC server and multi-user mobile edge system, and design optimization objectives to minimize the average response time of system tasks and total energy consumption. Then, task offloading and resource allocation process is modeled as Markov decision process. Furthermore, the deep Q-network is used to find the optimal resource allocation scheme. Finally, the proposed strategy is analyzed experimentally based on TensorFlow learning framework. Experimental results show that when the number of users is 110, final energy consumption is about 2500 J, which effectively reduces task delay and improves the utilization of resources.

Funder

The 2019 Anhui Province University Outstanding Top Talent Cultivation Funding Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3