Adipose-Derived Stem Cells Exosomes Improve Fat Graft Survival by Promoting Prolipogenetic Abilities through Wnt/β-Catenin Pathway

Author:

Chen Kexin1ORCID,Xiong Jiachao2ORCID,Xu Sha3ORCID,Wu Minliang1ORCID,Xue Chunyu1ORCID,Wu Minjuan4ORCID,Lv Chuan1ORCID,Wang Yuchong15ORCID

Affiliation:

1. Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China

2. Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China

3. Institute of Translational Medicine, Naval Military Medical University, Shanghai 200433, China

4. Department of Histology and Embryology, Naval Military Medical University, Shanghai 200433, China

5. School of Life Sciences and Technology, Tongji University, Shanghai 200092, China

Abstract

Autologous fat grafting has been widely used in plastic surgery in recent years, but the unstable retention of fat graft has always been a key clinical problem. Adipose tissue has poor tolerant to ischemia, so the transplanted adipose tissue needs to rebuild blood supply at an early stage in order to survive stably. Our previous study has found that comparing to human foreskin fibroblast exosome (HFF-Exo), human adipose-derived stem cells exosome (hADSC-Exo) can significantly improve the proliferation of vascular endothelial cells and the angiogenic effect of artificial dermal preconstructed flaps. Therefore, the ability of hADSC-Exo to improve the retention of adipose grafts and its potential regenerative mechanism aroused our strong interest. In this study, we applied hADSC-Exo and HFF-Exo to adipose grafts and explored the potential regeneration mechanism through various means such as bioinformatics, immunofluorescence, immunohistochemistry, and adipogenic differentiation. The results showed that hADSC-Exo can significantly promote grafts angiogenesis and adipogenic differentiation of ADSC to improve the retention of fat grafts and may downregulate the Wnt/β-catenin signaling pathway to promote the adipogenic differentiation. In summary, our results provide a theoretical basis for the clinical translation of hADSC-Exo in fat grafting.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3