The Effect of Cytotoxicity and Antimicrobial of Synthesized CuO NPs from Propolis on HEK-293 Cells and Lactobacillus acidophilus

Author:

Seyyed Hajizadeh Yasamin1,Babapour Ebrahim1,Harzandi Naser1,Yazdanian Mohsen2ORCID,Ranjbar Reza3ORCID

Affiliation:

1. Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran

2. Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran

3. Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Background. Drug resistance is currently possible anywhere in the world. Due to the discovery of antimicrobials, medicine, and health have made tremendous advances over the past several decades. Aim. This research evaluated the antimicrobial and cytotoxicity effects of green synthesis of copper oxide nanoparticles (CuO NPs) on Lactobacillus acidophilus and human embryonic kidney 293 cells (HEK). Method and Materials. Propolis was sampled and extracted. Green synthesis of CuO NPs was synthesized and characterized using SEM, TEM, DLS, BET, and zeta potential methods. L. acidophilus (ATCC 4356) was used, and the antimicrobial tests were carried out at different concentrations (10≥ mg/ml). Moreover, the cytotoxicity was evaluated using an MTT assay on human embryonic kidney 293 cells (HEK). Results. Synthesized CuO NPs using propolis extracts from Khalkhal (sample 1) and Gillan (sample 2) showed −13.2 and −14.4 mV, respectively. The hydrodynamic sizes of well-dispersed samples 1 and 2 were 3124.9 nm and 1726.7 nm, respectively. According to BET analysis, samples 1 and 2 had 5.37 and 8.45 m2/g surface area, respectively. The surface area was decreased due to the addition of propolis extract, and the pore size was increased. CuO NPs of samples 1 and 2 were visible on SEM images with diameters ranging from 75 to 145 nm and 120 to 155 nm, respectively. Based on TEM analysis, the size of CuO particles was increased in samples 1 and 2. CuO NPs particles had narrow size distributions with evenly dispersed NPs on all sides. The cell viability of the CuO NPs of samples 1 and 2 after 24, 48, and 72 hours was greater than 50%. As a result of the MIC and MBC tests, it was determined that samples 1 and 2 had the same effect against L. acidophilus (0.0024 mg/ml). Biofilm formation and degradation of sample 1 were more efficient against L. acidophilus. Conclusion. There was no evidence of cytotoxicity in the samples. In addition, results showed that the green synthesized CuO NPs from Khalkhal propolis were effective against L. acidophilus. Thus, the green synthesized CuO NPs from Khalkhal propolis were the best candidates for clinical application.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3