Comparative Analysis of Shear Strength Prediction Models for Reinforced Concrete Slab–Column Connections

Author:

Wahab Sarmed1,Mahmoudabadi Nasim Shakouri2,Waqas Sarmad3,Herl Nouman4,Iqbal Muhammad5,Alam Khurshid6,Ahmad Afaq12ORCID

Affiliation:

1. Civil Engineering Department, University of Engineering and Technology, Taxila, Rawalpindi, Pakistan

2. Department of Civil Engineering, The University of Memphis, Memphis, TN 38152, USA

3. Osmani and Company Pvt. Ltd., Karachi, Pakistan

4. Federal Board of Intermediate and Secondary Education, Islamabad, Pakistan

5. Department of Mechanical Engineering, CECOS University of IT and Emerging Sciences, Hayatabad, Peshawar 25000, Pakistan

6. Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman

Abstract

This research focuses on a comprehensive comparative analysis of shear strength prediction in slab–column connections, integrating machine learning, design codes, and finite element analysis (FEA). The existing empirical models lack the influencing parameters that decrease their prediction accuracy. In this paper, current design codes of American Concrete Institute 318-19 (ACI 318-19) and Eurocode 2 (EC2), as well as innovative approaches like the compressive force path method and machine learning models are employed to predict the punching shear strength using a comprehensive database of 610 samples. The database consists of seven key parameters including slab depth (ds), column dimension (cs), shear span ratio (av/d), yield strength of longitudinal steel (fy), longitudinal reinforcement ratio (ρl), ultimate load-carrying capacity (Vu), and concrete compressive strength (fc). Compared with the design codes and other machine learning models, the particle swarm optimization-based feedforward neural network (PSOFNN) performed the best predictions. PSOFNN predicted the punching shear of flat slab with maximum accuracy with R2 value of 99.37% and least MSE and MAE values of 0.0275% and 1.214%, respectively. The findings of the study are validated through FEA of slabs to confirm experimental results and machine learning predictions that showed excellent agreement with PSOFNN predictions. The research also provides insight into the application of metaheuristic models along with ANN, revealing that not all metaheuristic models can outperform ANN as usually perceived. The study also highlights superior predictive capabilities of EC2 over ACI 318-19 for punching shear values.

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3